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Supplemental Information 
Supplementary Tables (All provided as separate excel). 
Supplementary Table 1: Sample summary 
Summary information for each sample is listed, including sample ID, cohort, tissue type (frozen/FFPE), 
availability of paired normal, cell of origin (COO) and comprehensive consensus clustering (CCC) subtypes, 
QC metrics (coverage tumor and normal, TiN, etc.), purity, ploidy, cluster association, summary statistics for 
EBV and genetic features (total mutation count and density, driver mutation count and density, non-
synonymous mutation rate, total and driver SCNAs, number of chromosomal rearrangements).  
 
Supplementary Table 2: Patient characteristics 
a, Patient characteristics are summarized, including ID, cohort, age, gender, morphological subtype, IPI and 
its factors, PFS, OS, R-CHOP-like treatment (yes/no). b, Patient characteristics by cohort. The p-values were 
obtained by a Kruskal-Wallis rank-sum test  (age) or a Fisher’s exact test (all other categorical variables). All 
p-values were two-sided with no adjustment for multiple comparisons.  
 
Supplementary Table 3: Significantly mutated genes  
a, Mutated genes ranked by their significance values obtained from MutSig2CV. b, Genes with significant 
spatial clustering within a protein structure as detected by CLUMPS. c, Genes with significant spatial 
clustering at protein-protein interfaces as detected by EMPRINT. d, MAF file of all mutations of samples with 
a paired normal. a-d, Analyses have been performed in the full cohort (n=304). e, Two-sided Fisher’s exact 
test comparing frequencies of CCGs in tumor-only (TO, n=169) and tumor-normal paired samples (TN, 
n=135). Ranked by q-value. f, Two -sided Fisher’s exact test comparing frequencies of CCGs in samples 
obtained from FFPE (n=136) and fresh-frozen (n=168) samples after removal of the focal copy number gain 
peak 21q22.3. 

 
Supplementary Table 4: Mutational signature analyses  
a, Mutational signature activity in 304 samples. b, Mutational signature activity including clustering in 303 
samples. c, Aging signature enrichment by gene (n=12532 genes). d, cAID signature enrichment by gene 
(n=328 genes). e, AID2 signature enrichment by gene (n=967 genes). c-e, The p-values were obtained using 
a one-sided binomial test and the p-values were corrected for multiple hypotheses. Genes that are associated 
with each signature were identified using a q-value cutoff of 0.1. f, Cosine similarity of mutational signatures 
discovered in test sets to evaluate germline and FFPE contamination.  
 
Supplementary Table 5: Chromosomal rearrangements 
a, Regions of the targeted bait set for structural variants (SV) detection. b, Chromosomal rearrangements as 
reported by the newly developed Breakpointer pipeline. For each event, the table summarizes the 
chromosomal position of the first and second gene, type of rearrangement, support by which detection 
algorithm, supporting split read and read pair count of the alternate and reference alleles as well as the 
calculated cancer cell fractions (CCFs). c, Matrix of frequent (at least in 2 samples) chromosomal 
rearrangement by sample. d, Chromosomal rearrangements and the reported CCFs involving MYC, BCL2 
and BCL6 in 31 LBCL cell lines. Same format as b. 
 
Supplementary Table 6: Significant SCNAs and correlation to gene expression 
a, List of significant arm-level and focal SCNAs (CN gain and CN loss) with FDR <0.1 as identified by 
GISTIC2.0 in all 304 DLBCLs. b, Summary of focal peaks. Wide peak coordinates, genes within wide peaks 
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and summary statistics of within-peak genes with positive correlation to gene expression are listed. c, 
Detailed list of all genes with significant correlation between focal-peaks and associated cis-acting gene 
expression (FDR<0.25; FC>1.2). d, Summary of arm-level alterations. Genes within arm-level alterations 
and summary statistics of arm-level genes with positive correlation to gene expression are listed. e, Detailed 
list of all genes with significant correlation (FDR<0.25; FC>1.2) between arm-level alterations and associated 
cis-acting gene expression.  f, Summary of focal plus arm-level alterations. Wide peak coordinates of focal-
peaks, genes within wide peaks and summary statistics of within-peak genes with positive correlation 
between arm-level or focal-peaks to gene expression are listed. g, Detailed list of all genes with significant 
correlation (FDR<0.25; FC>1.2) between focal and arm-level alterations and associated cis-acting gene 
expression. b-g, Correlation of genes in GISTIC-defined alterations was performed for all samples with full 
available gene expression profiles (n=137). h, Gene sets used in gene set enrichment analysis in Fig. S13f-
h.  
 
Supplemental Table 7: Univariate and multivariate outcome associations of genetic drivers  
a, Univariate Cox model for all genetic driver alterations with at least 3% events in the R-CHOP treated 
cohort (n=259) for PFS and OS. Ranked by significance (q-value). b, Cox regression models of IPI with all 
significant factors from the univariate analyses for PFS (n=254) and OS (n=259) in the R-CHOP treated 
cohort. 
 
Supplementary Table 8: Gene sample matrix and features of consensus clusters  
a, Gene sample matrix. For each of the 304 samples, each of the 159 genetic “drivers” with a frequency ³3% 
are listed. Mutations (0, absent; 1, synonymous; 2, non-synonymous); SCNAs (no SCNA, 0; low grade 
SCNA,1; high grade SCNA, 2); Chromosomal Rearrangements (SV; absent, 0; present, 3).  b, Consensus 
clustering results. Cophenetic coefficient for k=4 to k=10 clusters, membership of each sample and silhouette 
values for "Best cluster" (k=5); c, Feature selection for each cluster, C1-C5 (n=292), by one-sided Fisher’s 
exact test.  
 
Supplementary Table 9: Clinical features, features across clusters and gene sets tested for an 
enrichment  
a, Summary table of clinical features by cluster. All p-values were obtained by a two-sided Fisher’s Exact 
test; p-values were not corrected for multiple comparisons. b, Pairwise comparisons of significant results 
from a. The p-values are obtained by a two-sided Kruskal-Wallis rank-sum test (purity and ploidy) or two 
sided Fisher’s Exact test. p-values were not corrected for multiple comparisons. 
 
Supplementary Table 10: Ordering analyses 
a, CCF-Matrix for all 158 driver alterations. b, Occurring and modelling of clonal-subclonal pairs by cluster. 
c, Results of ordering analyses for clonal-subclonal pairs powered to achieve a q-value<0.1. b-c, Ordering 
analysis was done for clusters C1-C5 (n=292). The p-values were obtained by a two-sided binomial test. and 
were corrected using the method of Benjamini and Hochberg.    
 
Supplementary Table 11: Outcome analyses of clusters 
a, PFS and OS survival proportions and 95% confidence intervals every 12 months for each cluster in the 
R-CHOP treated cohort (n=259). b, Multivariate model of clusters and IPI (with comparison to IPI-only 
model) for PFS and OS in the R-CHOP treated cohort (n=259). 
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Composition of the dataset. The dataset includes 304 newly diagnosed DLBCLs 
from 4 cohorts (129 samples from the RICOVER60 trial1; 67 samples from a Mayo/Iowa cohort, of which 51  
WES were previously reported2,3; 5 samples from the University of Göttingen, Germany; 103 samples from 
a DFCI/BWH/Mayo cohort4; top row) including DNA-derived from formalin-fixed paraffin embedded (FFPE) 
or frozen tissue (second row). DLBCLs with paired normal samples are indicated (third row). Samples used 
for targeted sequencing analyses of recurrent structural variants (SVs) (fourth row) and transcriptional 
profiling (fifth row) are noted.  DLBCLs from patients who were treated with state-of-the-art therapy (R-CHOP) 
and have long-term follow-up are also indicated below (bottom line). 
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Supplementary Figure 2. Mutation and SCNA pipeline and concepts for the germline somatic log 
odds filter for tumor-only samples. a, Analysis pipeline used for mutation and SCNA detection in the 
DLBCL cohort.  Steps highlighted in red were run with slight adjustments for tumor-only samples, namely the 
tumor was used for het site detection in AllelicCapseg and the additional filter that calculates the log odds 
ratio of an event being germline or somatic based on purity and CCF was applied. b, Cartoon demonstrating 
the conditions that would affect a germline het site’s allele fraction (AF).  In the normal component of the 
sample, a germline het site should have a 50% variant AF and should only deviate from this if there is a copy 
number alteration that affects it. c, Scatter plots demonstrate the correlation between the actual AF and the 
predicted AF using the model assuming the event is germline.  In the left plot, the events are limited to those 
that were detected in the analysis where the paired samples were run without their paired normal, and are 
therefore putative germline events, while the plot on the right represents sites that were detected when paired 
samples were run with the paired normal, and are therefore putative somatic mutations.  When using the 
model that assumes a site is germline, there are many events showing a positive correlation between the 
predicted AF and observed AF for putative germline events, while the same correlation is not observed in 
the putative somatic events. d, Cartoon demonstrating the conditions that would affect a somatic events’ 
allele fraction, which should be 0% in the normal component of the sample as well as any part of the tumor 
that is not part of the subclone where the event developed.  The allele fraction can also be shifted by any 
copy number event that affects the region of the somatic event.  All scenarios are considered in modeling 
the predicted AF for somatic events, and the most likely one is used to compare against the germline 
prediction. e, Scatter plots are the same as in c, except the predicted and actual AFs for the somatic model 
are plotted.  There is a much stronger correlation for the actual AF and predicted AF in the putative somatic 
events than putative germline events. f, Once the most likely AF is calculated, the likelihood that it is 
consistent with the observed AF is calculated for the germline model and somatic model, and the log odds 
ratio is plotted here for putative germline and somatic events.  The log odds diverge more for low-purity 
samples because the AF for somatic events changes more as a result of the fact that they have 0% AF in 
the normal component of the tumor while germline events are present at the 50% rate. g-i, To determine the 
sensitivity and false discovery rate of the tumor-only pipeline, each of the paired samples run as tumor-only 
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(n=147) were randomly split assigned into a training set and a test set such that half of the data was in each 
set (n1=74 and n2=73).  Each set was then divided by purity so that 10% of the data was placed in each bin, 
and the cutoff that yielded 99% sensitivity (retained 99% of putative somatic mutations) was calculated for 
each purity bin.  These cutoffs were then used to fit a formula based on purity to determine the cutoff for 
each sample. The resulting cutoff was applied to the other dataset.  g, Distribution of sensitivity and false 
positive rate for patients within each purity decile as boxplot (median, red line; inter-quartile range, box; 
approximately 2.7 standard deviations of median, whiskers).  The false discovery rate is notably very low for 
low purity samples due to the allele shift in somatic mutations down from 50%, while very high for more pure 
samples but sensitivity does not go below 90% for any purity bin. h, Logodds thresholds for 99% sensitivity 
calculated within each decile for each training/test set (n1=74 and n2=73) that was used to calculate the 
logodds thresholds for the other set.  The points represent the mean logodds threshold in each decile that 
will yield a true positive rate of 99%, while the error bars represent one standard deviation assuming a beta 
distribution. The plotted line represents a linear fit to the training set. i, ROC curve of different log odds cutoffs 
at different purities. 
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Supplementary Figure 3. Tumor-only filter performance. a, Distribution of total event counts for SNVs 
and Indels after each step of the analysis for tumor-only (red) and paired (blue) samples. b, Mutation counts 
for the paired samples when run through the paired analysis (x) and tumor-only pipeline (y).  After the full 
tumor-only pipeline, many samples have approximately as many events called as the paired analysis, but 
none have fewer, which is consistent with the high sensitivity and low false positive rate demonstrated in 
figure a. c, The paired normals of our DLBCL cohort were run as “tumors” through the tumor-only pipeline in 
order to show that after the tumor-only pipeline there are few if any recurrent events that could be 
contaminating the list of cancer consensus genes.  Since these samples should not have a tumor component, 
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trials were tried where each sample was assigned 90% purity, the same purity as its paired tumor, and 10%, 
all of which yield up to 3 significant genes, which is a very small number given the sample size. d-f, 
Comparison of AllelicCapseg-defined amplitudes at points selected throughout the genome every 1 
megabase (d), ABSOLUTE-defined ploidy (e) and purity (f) using 147 paired-samples processed either 
through the tumor-only pipeline or the paired pipeline. r2 values are the Spearman’s correlation coefficients 
squared.  g, A two-sided Fisher’s exact test was applied to each of the 159 putative driver events to determine 
if there was a significant bias in samples that were tumor-only (TO) vs. paired (TN) samples.  The graph 
shows that each of the observed p-values is as it would be randomly expected, suggesting that there is no 
bias of the tumor-only analyses towards any of the 159 putative drivers. h, Separate Mutsig2CV analyses 
were performed for the 134 paired samples using the patient-matched normal sample or applying our tumor-
only pipeline. Scatter plot of Mutsig2CV q-values using (x-axis) or not using (y-axis) the patient-matched 
normal sample (q-values <0.5 are plotted). i, Venn-diagram of significant mutated genes as identified by 
Mutsig2CV (q-value <0.1) using the patient-matched normal (TN, left, n=135) or the tumor-only (TO, right, 
n=169) pipeline. j,k, CoMut plot of CCGs detected in 134 samples with available paired normal using the 
patient-matched normal sample (j) or the tumor-only pipeline (k). l, GISTIC2.0-defined recurrent SCNAs in 
134 paired samples were analyzed within the CN-pipeline using either the patient-matched normal (mirror 
plot, left side) or an unrelated normal (mirror plot, right side). Separate mirror plots for amplifications (left) 
and deletions (right). m-o, A two-sided Fisher’s exact t-test was performed for all 159 genetic events and 
detected a significant bias of the focal 21q22.3 copy number gain in the Q-Q plot (m). The 21q22.3 focal gain 
was found to be significantly overrepresented in FFPE samples (q = 0.00058) with all 15 detected events 
occurring in FFPE samples (n=136) compared to 0 events found in the frozen samples (n=168) (m). This 
significant test combined with follow up review of the noise of targets in the region (o), led to removal of 
21q22.3 copy gain from the analysis as a probable artifact.  Q-Q plot for the two-sided Fisher’s exact t-test 
after removal of 21q22.3 reveals no significant enrichment (q<0.1) for any of the remaining 158 genetic 
drivers (n). o, As measurement of CN noise we plotted the distribution of amplitude difference in adjacent 
targets of the focal amplification peak, 21q22.3 (top row), and a representative second focal amplification 
peak, 1q23.3 (bottom row) and compared the SD (s) of this common noise metric5. For each alteration, we 
visualized the noise metric in FFPE and frozen samples and for each group separated cases that harbor or 
lack the event. The number of FFPE or frozen samples with the indicated alterations, n, is shown. N in each 
histogram is the number of total segments/probe measurement visualized. Notably, focal gain of 21q22.3 
was only found in FFPE samples and had the highest s of all focal events, which prompted the removal from 
all analyses. p, Comparison of significantly mutated genes prioritized by MutSig1.0 vs. MutSig2CV6 
algorithms in an equal sized DLBCL data set (previously published Lohr et al dataset2) of 49 DLBCL samples. 
q, Comparison of significantly mutated genes prioritized by MutSig2CV6 algorithm in previously published 
Lohr dataset and the current data set. Of note, the Lohr set is part of the current 304 tumor dataset. r, 
Comparison of significantly mutated genes prioritized by MutSig2CV6 algorithm in this dataset to those 
identified with MutSigCV in Reddy et al.7 s, Scatter plot comparing the frequencies of CCGs reported by Reddy 
et al. in our series (x-axis) and the Reddy et al. paper (y-axis). Blue genes are found in both studies and red genes 
are only found in Reddy et al.  Of note, the frequency of the 40 genes exclusively identified in our series (Fig. S3r, 
left) could not be assessed in Reddy et al. A circle around the gene indicate landmark genes for clusters. Error 
bars represent 1-s confidence intervals. Importantly, the frequency of certain well known DLBCL mutations, such 
as TP53, CREBBP or CD79B, is significantly lower in Reddy et al.  t, Overlap of 98 CCG genes (q<0.1) to 
COSMIC Cancer Gene consensus (genes causally implicated in cancer, Nat Rev. Article, 
https://cancer.sanger.ac.uk/census). u, Overlap of 55 low frequency CCG genes (q<0.1, f<6%) to COSMIC 
Cancer Gene consensus genes.   

Index for mutation diagrams (lollipop figures)      
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Gene Longname nnon npat nsite q 
Stickfig.  
at page 

ACTB actin, beta 37 32 27 7.90E-08 20 
B2M beta-2-microglobulin 31 26 22 1.54E-12 16 
BCL10 B-cell CLL/lymphoma 10 21 16 16 3.16E-05 23 
BCL11A B-cell CLL/lymphoma 11A (zinc finger protein) 11 10 10 8.00E-02 29 
BCL2 B-cell CLL/lymphoma 2 111 53 76 8.41E-13 15 
BCL6 B-cell CLL/lymphoma 6 (zinc finger protein 51) 18 17 16 6.59E-08 20 
BRAF v-raf murine sarcoma viral oncogene homolog B1 19 18 13 1.24E-08 19 
BTG1 B-cell translocation gene 1, anti-proliferative 68 43 55 3.67E-13 15 
CARD11 caspase recruitment domain family, member 11 43 34 31 1.15E-12 16 
CCL4 chemokine (C-C motif) ligand 4 5 4 4 3.78E-03 26 
CCND3 cyclin D3 14 14 11 1.39E-12 16 
CD274 CD274 molecule 10 8 10 7.89E-04 25 
CD58 CD58 molecule 30 19 29 1.16E-11 17 
CD70 CD70 molecule 38 27 33 2.02E-13 14 
CD79B CD79b molecule, immunoglobulin-associated beta 50 44 23 2.02E-13 14 
CD83 CD83 molecule 24 18 18 3.23E-05 23 
CIITA class II, major histocompatibility complex, transactivator 11 9 10 5.49E-02 28 
COQ7 coenzyme Q7 homolog, ubiquinone (yeast) 4 4 3 9.50E-02 30 
CREBBP CREB binding protein (Rubinstein-Taybi syndrome) 64 51 54 2.02E-13 14 
CRIP1 cysteine-rich protein 1 (intestinal) 7 7 7 1.42E-05 22 
CXCR4 chemokine (C-X-C motif) receptor 4 9 8 8 2.87E-06 21 
DTX1 deltex homolog 1 (Drosophila) 48 37 37 2.29E-03 25 
EBF1 early B-cell factor 1 37 32 34 1.09E-11 17 
EEF1A1 eukaryotic translation elongation factor 1 alpha 1 19 17 16 2.22E-10 18 
EP300 E1A binding protein p300 26 25 22 5.34E-05 23 
ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) 17 15 14 3.09E-02 27 
ETV6 ets variant gene 6 (TEL oncogene) 24 21 13 9.48E-07 21 
EZH2 enhancer of zeste homolog 2 (Drosophila) 24 22 10 3.02E-10 19 
FAS Fas (TNF receptor superfamily, member 6) 27 24 18 2.02E-13 15 
FUT5 fucosyltransferase 5 (alpha (1,3) fucosyltransferase) 4 4 4 8.29E-02 29 
GNA13 guanine nucleotide binding protein (G protein), alpha 13 48 33 45 6.47E-08 20 

GNAI2 
guanine nucleotide binding protein (G protein), alpha inhibiting 
activity polypeptide 2 11 10 11 8.14E-02 29 

GRB2 growth factor receptor-bound protein 2 10 8 9 1.04E-04 24 
HIST1H1B histone cluster 1, H1b 30 26 23 7.17E-06 22 
HIST1H1C histone cluster 1, H1c 41 37 31 2.22E-12 17 
HIST1H1D histone cluster 1, H1d 25 20 22 8.34E-04 25 
HIST1H1E histone cluster 1, H1e 58 39 43 7.88E-09 19 
HIST1H2AC histone cluster 1, H2ac 19 17 16 1.95E-05 23 
HIST1H2AM histone cluster 1, H2am 18 17 13 3.80E-03 26 
HIST1H2BC histone cluster 1, H2bc 25 18 20 7.68E-06 22 
HIST1H2BK histone cluster 1, H2bk 27 24 27 1.71E-04 24 
HIST1H3B histone cluster 1, H3b 10 10 6 8.60E-02 29 
HIST2H2BE histone cluster 2, H2be 17 14 13 8.99E-02 29 
HLA-A major histocompatibility complex, class I, A 27 25 24 1.15E-12 16 
HLA-B major histocompatibility complex, class I, B 36 35 26 2.02E-13 14 
HLA-C major histocompatibility complex, class I, C 16 13 12 8.88E-11 18 
HLA-DMA major histocompatibility complex, class II, DM alpha 8 6 8 1.94E-02 27 
HVCN1 hydrogen voltage-gated channel 1 11 10 10 8.95E-07 21 
IGLL5 immunoglobulin lambda-like polypeptide 5 51 30 39 3.70E-08 20 
IKZF3 IKAROS family zinc finger 3 (Aiolos) 11 10 8 4.97E-06 22 
IL6 interleukin 6 (interferon, beta 2) 6 6 6 9.82E-02 30 
IRF8 interferon regulatory factor 8 25 24 20 6.47E-04 24 
KLHL6 kelch-like 6 (Drosophila) 37 28 31 2.02E-13 15 
KMT2D myeloid/lymphoid or mixed-lineage leukemia 2 96 75 95 2.07E-11 18 
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 8 8 3 4.97E-06 22 
LTB lymphotoxin beta (TNF superfamily, member 3) 29 20 23 5.48E-03 26 
LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 15 12 14 6.11E-07 21 
MEF2B myocyte enhancer factor 2B 20 20 19 2.99E-11 18 
MYD88 myeloid differentiation primary response gene (88) 57 55 10 2.02E-13 14 
NANOG Nanog homeobox 6 5 4 1.22E-02 27 
NAV1 neuron navigator 1 7 7 5 3.46E-03 26 
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NFKBIA 
nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha 22 15 22 5.22E-11 18 

NFKBIE 
nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, epsilon 12 10 9 1.43E-04 24 

NLRP8 NLR family, pyrin domain containing 8 10 10 9 6.37E-02 28 
NOTCH2 Notch homolog 2 (Drosophila) 21 20 15 1.00E-06 21 
PDE4DIP phosphodiesterase 4D interacting protein (myomegalin) 27 24 24 3.49E-02 28 
PIM1 pim-1 oncogene 142 67 84 1.35E-12 16 
POU2AF1 POU class 2 associating factor 1 12 12 8 4.01E-10 19 
POU2F2 POU class 2 homeobox 2 17 17 9 8.54E-09 19 
PRDM1 PR domain containing 1, with ZNF domain 23 22 19 2.02E-13 15 
PRKCB protein kinase C, beta 12 11 10 3.14E-02 27 
PRPS1 phosphoribosyl pyrophosphate synthetase 1 4 4 3 3.26E-02 27 

PTEN 
phosphatase and tensin homolog (mutated in multiple 
advanced cancers 1) 11 10 10 3.88E-05 23 

PTPN6 protein tyrosine phosphatase, non-receptor type 6 21 13 20 2.17E-05 23 
RAD9A RAD9 homolog A (S. pombe) 5 5 3 2.08E-03 25 
RHOA ras homolog gene family, member A 19 16 15 1.03E-10 18 
SF3B1 splicing factor 3b, subunit 1, 155kDa 9 9 7 5.05E-02 28 
SGK1 serum/glucocorticoid regulated kinase 1 118 43 73 3.13E-08 20 
SIN3A SIN3 homolog A, transcription regulator (yeast) 12 11 12 2.46E-02 27 
SMEK1 SMEK homolog 1, suppressor of mek1 (Dictyostelium) 8 8 8 6.60E-03 26 
SPEN spen homolog, transcriptional regulator (Drosophila) 29 27 28 6.87E-04 25 

STAT3 
signal transducer and activator of transcription 3 (acute-phase 
response factor) 22 19 18 4.72E-08 20 

STAT6 
signal transducer and activator of transcription 6, interleukin-4 
induced 16 14 11 5.24E-07 21 

TBL1XR1 transducin (beta)-like 1 X-linked receptor 1 23 22 18 2.02E-13 15 
TLR2 toll-like receptor 2 9 9 7 3.96E-02 28 
TMEM30A transmembrane protein 30A 19 17 16 2.22E-12 17 
TMSB4X thymosin beta 4, X-linked 44 38 27 9.32E-12 17 
TNFAIP3 tumor necrosis factor, alpha-induced protein 3 29 26 28 1.45E-11 17 

TNFRSF14 
tumor necrosis factor receptor superfamily, member 14 
(herpesvirus entry mediator) 43 42 39 2.22E-12 16 

TOX thymocyte selection-associated high mobility group box 13 12 9 6.83E-06 22 
TP53 tumor protein p53 70 65 53 2.02E-13 14 
UBE2A ubiquitin-conjugating enzyme E2A (RAD6 homolog) 13 12 12 2.88E-10 19 
XPO1 exportin 1 (CRM1 homolog, yeast) 7 7 3 5.39E-04 24 
YY1 YY1 transcription factor 8 8 8 2.53E-03 26 
ZC3H12A zinc finger CCCH-type containing 12A 10 10 10 3.30E-04 24 
ZEB2 zinc finger E-box binding homeobox 2 14 13 14 8.00E-02 29 
ZFP36L1 zinc finger protein 36, C3H type-like 1 30 25 20 1.73E-03 25 
ZNF423 zinc finger protein 423 5 5 5 4.80E-02 28 
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Supplementary Figure 4: Mutation diagrams (lollipop figures) for all significantly mutated genes. For 
each significantly mutated gene, all non-synonymous mutations are visualized within the functional domains 
of the respective protein using MutationMapper v1.0.18,9. Genes are ordered by significance (MutSig2CV q-
value). An alphabetic index of all mutation diagrams is included on page 12/13. 
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Supplementary Figure 5: Significant mutation clustering at protein structures and additional BRAF 
mutation details. a-d, Crystal structures of CREBBP (a, PDB: 4pzt), KRAS (b, PDB: 4lv6), MAP2K1 (MEK1, 
c, PDB: 3w8q) and PTPN6 (SHP1, d, PDB: 4grz) in grey. Mutated residues in red and color intensity scales 
with number of mutations. Polar interactions in yellow. Ligands in blue (a, S-Co-enzyme A; b, GDP; c, 
ATPgS; d, phosphate). e, BRAF mutations are shown in the context of the functional domains of BRAF. 
Analysis reveals clustering of mutations in the P-loop (orange) and activation-loop (cyan) of the kinase 
domain. Structural and functional consequences for several of these BRAF mutations have been analyzed 
previously10-12. Mutations that either activate the kinase domain by abolishing a hydrophobic interaction 
between P- and activation-loop (green) or result in a reduced kinase activity (red) are noted10-12. Since kinase-
death mutations transactivate RAF1, the downstream consequences of all mutations are identical - increased 
phosphorylation and signaling through ERK10-12. 
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Supplementary Figure 6: Significant mutation clustering at protein interfaces. a, Co-crystal structure 
of RHOA (grey) and ARHGEF18 (cyan, PDB:4D0N) as a representative example of clustered mutations at 
the interphase of RHOA to its ARHGEFs (left panel, side view; right panel, 90° rotation around vertical axis 
of left panel). Mutated residues are labeled in black and shown in red and color intensity scales with number 
of mutations. Previous studies also described RHOA mutations that perturb interactions with ARHGEFs in 
other tumors13,14. b, Crystal structure of RHOA (grey, PDB ID: 1dpf). Of note, mutations in RHOA do not 
affect the catalytic pocket surrounding GDP (blue); instead, the mutations perturb the interphase with 
ARHGEFs (highlighted in yellow; Supplementary Table 3c, list of all CLUMPS at interfaces/EMPRINT 
results). c, Model of RHOAwt (top) and RHOAmut (bottom) function. ARHGEFs serve as guanosine exchange 
factors (GEF) facilitating the replacement of GDP (blue) by GTP (red). Active RHOAwt-GTP blocks migration 
and Pi3K/AKT signaling.  Mutations in RHOA (RHOAmut) prevent the binding of ARHGEFs, keeping RHOAmut 
in its inactive GDP state and preventing negative regulation of migration and Pi3K/AKT signaling. d, Co-
crystal structure FBXW7 (grey) and cyclin E1 (CCNE1, blue). Mutations in FBXW7 at the interphase to the 
CCNE1 degron are labeled in black. e, Model of FBXW7mut function. The SCFFBXW7-wt (complex of SKP1, 
CUL1 and FBXW7wt) recognizes and targets cyclin E1 (CCNE1) for proteasomal degradation by 
ubiquitination (Ub)15. Mutations in FBXW7 (FBXW7mut) perturb the recognition of cyclin E1 and its subsequent 
proteasomal degradation.  
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Supplementary Figure 7. Supporting data for mutational signature analysis. a, De novo signature 
extraction for 304 DLBCL samples identified a putative microsatellite instability (MSI) signature in addition to 
two signatures, 304-B and 304-C.  b, Based on the bimodal distribution of nearest mutational distance (NMD), 
all SNV mutations were partitioned into two groups of clustered (NMD £ 1kb) and non-clustered mutations 
(NMD > 1kb). c, The Q-Q plots for the gene-level signature enrichment analysis in the remaining 303 DLBCLs 
after removing the MSI case (see Methods for details). d, Correlations of signature activity to the age at 
diagnosis across seven age groups (n=303 DLBCLs). Box plots represent a distribution of each signature 
activity of samples belonging to each age bin (line, median; box, interquartile range [IQR]; whiskers,1.5x 
IQR). The Pearson correlation was calculated between the median signature activity and the median age in 
each age group.  e, Rainfall plots of all mutations by mutational signature. Vertical axis illustrates the NMD, 
horizontal axis the genomic location. Ig loci as loci of physiologic hypermutation are highlighted in blue, 
6p21.2/PIM1 and 18q21.33/BCL2 as loci of aberrant somatic hypermutation are visualized in pink. Clustered 
mutations (NMD £ 1kb) below the dotted red line. f, For all significantly mutated genes, the relative 
contribution of each mutational process is visualized (C>T CpG/”Aging”, purple; cAID, cyan; AID2, blue). 
Genes were ordered from top to bottom by the fraction of aging signature. Histogram to the right reports the 
number of mutations. Error bars show the standard error of the mean. g-i, Normalized signature profiles 
determined by de-novo signature extraction for the combined sample set (COMBINED-SET, n=303; g), the 
paired sample set analyzed with the matched normal samples (PAIRED-SET-TN, n=134; h), and the paired 
sample set analyzed without the matched normal (PAIRED-SET-TO, n=134, i); j, Heatmap of the cosine 
similarity of three signatures among COMBINE-SET, PAIRED-SET-TN, and PAIRED-SET-TO; k, Gene-level 
signature fraction of the C>T CpG/Aging signature (left), cAID signature (middle), and  AID2 signature (right) 
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across CCGs (n=>10mutations) between PAIRED-SET-TN (n=134; x-axis) and PAIRED-SET-TO (n=134; y-
axis). Note that the activity of PAIRED-SET-TO was determined by the projection onto the signature profiles 
of PAIRED-SET-TN. l, m, Signature fractions for CCGs by using (l) or not using (m) the patient-matched 
normal sample. Error bars show the standard error of the mean. See f for details. n,o, Normalized signature 
profiles determined by de-novo signature extraction for fresh frozen samples (FRZN-SET, n=168) (n) and for 
FFPE samples (FFPR-SET, n=136) (o). p, Heatmap of the cosine similarity of three signatures among FRZN-
SET, FFPE-SET, and COMBINE-SET. q, Cosine similarity of Aging (left), cAID (middle), and AID2 (right) 
signature extracted for 500 pooled sample sets as a function of a fraction of FFPE samples. In each 
experiment, randomly chosen fresh-frozen samples were replaced by the same number of random FFPE 
samples.  
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Supplementary Figure 8. Chromosomal rearrangements – pipeline and summary statistics. a, 
Schematic overview of the analytical pipeline to detect SVs and their CCF. The outputs of four different 
detectors, dRanger16, SVaBA, Lumpy17 and BreaKmer18, were clustered and inputted into Breakpointer16 to 
obtain supporting split read evidence and a unified count read of the reference and alternate allele.  SVs 
found with less than 4 total reads, SVs found in a Panel of Normals (PoNs), SV that were part of polymorphic 
Ig and TCR regions and artifacts in manual review were filtered out. For the remainder of events, the CCF 
was calculated as described in the Methods. b, Venn Diagram visualizing the overlap of SVs identified by 
each detector. c, Heatmap illustrating the detector evidence for chromosomal rearrangements involving 
BCL2, BCL6 and MYC.  d, Summary of SV types in all samples with available SV data (n=296). Of note, 
translocations of BCL2 and BCL6 were largely mutual exclusive (one-sided Fisher’s exact test, p=8.6x10-4). 
e, Summary of the most frequent SVs ranked by frequency. 
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Supplementary Figure 9. Additional chromosomal rearrangements and mutual exclusivity/co-
occurrence visualization. a-f, Circos plots of all detected chromosomal rearrangements involving the IgH 
(a), Igk (b), Igl (c), TBL1XR1 (d), TP63 (e) and CIITA (f) loci. Line thickness correlates to number of events. 
Partner genes in grey, if significantly mutated in black. For consistency, BCL2, BCL6 and MYC are in green, 
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blue and red, as in Fig. 3 of the main manuscript.  g, Selected translocations between IgH and partner genes 
are plotted in their genomic context. Breakpoints are visualized by an arrow; the two numbers on the arrow 
indicate split read count followed by read pair count supporting this chromosomal rearrangement. Boxes 
indicate exons; red box, indicates first coding exon; ORF in green; enhancer element in black. Translocations 
are activating (orange partner gene) or inactivating by destroying the ORF (dark blue). All diagrams display 
the IgH partner in the coding direction. h, Color-coded matrices that visualize significant mutual exclusivity 
of SVs and CN gains in BCL2 (top, p=0.038), co-occurring of SV and mutations in BCL2 (middle, p=8.25e-

36) and co-occurring of single CN loss and mutations in TP53 (bottom, p=4.98e-14). Mutations, black; SV, 
green; single CN loss, cyan; low grade CN gain, pink; high grade CN gain, red. Contingency table of events 
in the full cohort (n=304) and p-value obtained by a one-sided Fisher’s Exact test are displayed to the right. 
i, Color-coded matrix shows genetic alterations in indicated immune evasion molecules. See for color code 
legend of main Fig. 4.  
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Supplementary Figure 10. Supporting outcome analyses of individual genetic alterations. a,b, 
Individual genetic features detected in ≥ 3% of the R-CHOP cohort (150 genetic drivers) were assessed  for 
their association to PFS (a) and OS (b) in univariate Cox regression models (q-value <0.2). Volcano plots 
show hazard ratio (x-axis) vs. significance (y-axis). Size of dots represent the number of mutations; the color 
of dots represent significance (p-value<0.05, light red; p-value>0.05, grey). Alterations with significant p-
values are labeled (q-value<0.2: CN gains, red; CN loss, blue; SVs, green; q-value>0.2: Mutations, grey; CN 
gain, pale light red; CN blue: light blue). c, Kaplan Meier plots for significant factors in univariate model 
predicting OS in the R-CHOP treated cohort with OS data (n= 259) that were also independent to each other 
in a multivariate model; alterations absent, solid line; alterations present, dashed line; p-values derived from 
log-rank test. d, Forest plots visualize the multivariate analysis of IPI risk groups and individual genetic factors 
for OS in the R-CHOP treated cohort with OS data (n= 259).  
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Supplementary Figure 11. Consensus clustering. a, Consensus plots for k=4 to k=10 cluster solutions. 
b, Cophenetic coefficient for k=4 to k=10 cluster solutions. 
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Supplementary Figure 12. Expanded consensus clustering gene-sample matrix.  Clusters C1-C5 with 
their associated landmark genetic alterations are visualized as in Fig. 4 (top). At the bottom, the additional 
recurrent alterations that were not associated with specific clusters are shown. See also legend of main Fig. 
5. 
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Supplementary Figure 13. Summary of genetic alterations by cluster. a, Incidence of MYD88 and 
CD79B mutations in clusters C0-C5 (Fig.4, main manuscript). Types of MYD88 mutations are color-coded 
(MYD88L265P, blue; MYD88other, pink). In cluster C5, MYD88 and CD79B mutations are more frequent, MYD88 
mutations are more likely to be MYD88L265P and MYD88 and CD79B mutations are more likely to be 
concordant. b, Drivers SCNAs in clusters C0-C5 (n=304). The p-values is obtained using a two-sided Mann-
Whitney U test. c, Mutation density in clusters C0-C5 (n=304). The p-values is obtained using a two-sided 
Mann-Whitney U test. d, Fraction of mutational signature activity for each cluster C1-C5 (n=292). b-d, Data 
visualized as a Tukey box plots (line, median; box, interquartile range [IQR]; whiskers, 1,5x above or below 
median). e, Incidence of TP53 mutations and 17p loss across clusters C0-C5 (n=304). Bi-allelic inactivation 
of TP53 in C2 is significantly more frequent than in other clusters (p= 8x10-14; two-sided Fisher’s exact test). 
f, Gene set enrichment analysis (GSEA) plot of BCL6 and NOTCH2 target gene sets19 in C1 DLBCLs 
compared to other DLBCLs. g, GSEA of a functionally defined EZH2 target gene list20 in C3 DLBCLs 
compared to other DLBCLs. h, GSEA of E2F and TP53 target genes (MSigDB; 
http://software.broadinstitute.org/gsea/msigdb;21) in C2 DLBCLs compared to the other DLBCLs. f-h, The 
GSEA analyses were performed in all samples with available gene expression data and Cluster C1-C5 
annotation (n=131).  
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Supplementary Figure 14. CCF distribution plots for each alteration type and mutational signatures. 
a-d, CCF distribution plots for mutations (a), focal SCNAs (b), arm-level SCNAs (c), chromosomal 
rearrangements (d). Individual events as scatter plots to the left, Histogram to the right summarizes the 
overall clonality (blue, clonal; yellow, subclonal). Alterations with a CCF ³ 0.9 are defined as “clonal”. e, CCF 
distribution of mutations for each mutational signature. Black, clonal; grey, subclonal. Plotted is the total 
number of mutations (left) and the fraction of mutations for a given CCF. f, Scatter plot of CCF estimates for 
shared mutations between 134 samples with patient-matched normal samples analyzed either with the 
tumor-only or tumor-normal pipeline, highlighting for all samples the tight correlation between the CCF called 
in each pipeline. The main deviation was in the hypermutator case, represented by a secondary diagonal 
line below the primary one, where the purity was called differently in ABSOLUTE between the paired (0.81), 
and tumor-only pipeline (0.98). g, Violin plot (box, interquartile range [IQR]; line in box, median; whiskers, 
1.5x IQR; width of violin plot, density of events) comparing the CCF distributions of CCGs with more than 10 
mutations between all tumor-only samples (n=169) and all paired samples (n=135). The p-value is obtained 
from a two-sided Fisher’s exact test comparing clonal and subclonal mutations between the two groups. h, 
Histogram of CCFs for all 47 SVs detected in DLBCL cell lines involving BCL2, BCL6 or MYC. Note that the 
majority of CCFs indicate clonal alterations, providing an orthogonal evidence that the CCF SV pipeline 
accurately determines the CCF of likely clonal drivers.  
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Supplementary Figure 15. Q-Q plot of timing analysis of genetic alterations. For every pair of cancer 
gene somatic variants (mutations, SVs, SCNAs) in the full DLBCL cohort (n=304), we selected the pairs with 
at least 4 samples in which the two variants co-occurred with one as clonal and the other sub-clonal. In the 
absence of event ordering, we would expect these events to have a random ordering according to a two-
sided binomial test with p=0.522. The q-q plot of the expected vs. observed –log10(p) of paired events in the 
full cohort shows that the bulk of variant pairs have no significant ordering.  
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Supplementary Figure 16. Association of coordinate genetic signatures with overall survival (OS). a, 
Kaplan Meier (KM) plot for OS for all clusters, C0 (grey), C1 (purple), C2 (cyan), C3 (orange), C4 (turquoise), 
C5 (red) to the left. b, KM plot for OS for favorable DLBCL clusters (C0, C1,C4) in black, C2-DLBCLs in blue 
and unfavorable DLBCLs (C3, C5) in pink. The p-value obtained using the log-rank test.  c, Forest plots 
visualize HR and p-values obtained from the multivariate analysis of OS including clusters and IPI. d, KM 
plot for OS for the two genetically distinct GCB-DLBCLs (left), ABC-DLBCLs (middle) and C2 DLBCLs. The 
p-value obtained using the log-rank test. a-d, All analyses were performed in the R-CHOP treated cohort 
with OS information (n=259). e, KM plot for PFS (upper row; n=45 ) and OS (lower row; n=47) for all C3 
DLBCLs (left), C3 DLBCLs split by presence/absence of SV-MYC (middle) and C3 DLBCLs split by 
presence/absence of concurrent SV-MYC and SV-BCL2 (right). The p-value obtained using the log-rank test.  
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Supplementary Note 
 
Additional Quality Control. The amount of cross-individual contamination for tumor-normal pairs was 
estimated by ContEst23 and the median contamination was 0.3% (interquartile-range 0.1-0.4%) . Due to the 
lack of methods for estimating cross-individual contamination without a paired normal, tumor-only samples 
were assumed to have 2% contamination, which is higher than 98% of the contamination estimates 
determined by ContEst in the paired samples.  

 
A total of 47 samples were omitted due to quality control concerns, including 12 that failed sequencing (no 
BAM file), 23 samples had coverage that was too low to analyze (less than 75% of exome was callable), 1 
was removed because of a high ContEst value (greater than 5%) and 11 were removed due to pervasive 
realignment artifact. Of the remaining 304 samples, one sample was treated as a tumor-only because its 
paired normal showed evidence of high tumor in normal contamination and two samples where the tumor 
and normal samples were mixed up.  

Estimation of and correction for tumor in normal content (deTiN).  As described previously22, tumor in 
normal contamination significantly decreases the ability to detect somatic mutations. Therefore, we estimated 
the presence of tumor contamination in matched normal samples when available using the deTiN 
algorithm22,24. Briefly, deTiN uses candidate somatic nucleotide variants and allelic copy number events to 
infer the fraction of tumor cells in a matched normal sample. This estimate was then used to recover somatic 
events that otherwise would have been rejected by MuTect or Indelocator due to low-allele fraction presence 
in the normal. 

Germline Somatic Log Odds Filter for Tumor-only Samples. For each event that passed all preceding 
filters (SNV or Indel), its CCF, purity, ploidy and local copy number were used to determine the log ratio of 
the probability that its allele fraction is consistent with the allele fraction modeled for a hypothetical germline 
event and the probability it is consistent with a modeled somatic event.  First, the total amount of DNA per 
cell (in units of copy number) was calculated as follows:  
 

 
 
Where α is the sample purity, N is the normal copy number at the site (2 for autosomes, 2 for X in females 
and 1 for X in males), CCNV is the CCF of any potential SCNAs at that site, and µ and Μ are the minor and 
major allele counts of the copy number.  Because heterozygous germline sites should always be at 50% 
allele fraction in the normal component of the tumor, only copy number alterations should affect the predicted 
allele fraction.  Thus, there are two models for germline event allele fraction, depending on whether the 
germline event is on the minor allele (G1) or major allele (G2) of a copy number event in the region 
(Supplementary Fig. 2b,c): 
 

 
 

D = (1� ↵)N + (1� CCNV )↵N + ↵CCNV (µ+M)

G1 =
(1� ↵) + (1� CCNV )↵+ ↵CCNV µ

D
pG1 = �(G1, nALT + 1, nREF + 1)

G2 =
(1� ↵) + (1� CCNV )↵+ ↵CCNV M

D
pG2 = �(G2, nALT + 1, nREF + 1)
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Where G1 is the modeled allele fraction for when the germline site event is on the minor allele, and G2 is the 
modeled allele fraction for when the germline event is on the major allele.  The probability that the observed 
allele fraction is consistent with this model is calculated based on a beta (b) probability distribution function, 
where the modeled hypothesis is tested against the actual counts of reference (nREF) and variant (nALT) reads.  
For somatic events, 6 separate models must be evaluated depending on the order in which events happen 
in a tumor (Supplementary Fig. 2d,e).  Specifically, the models account for the minor and major allele when 
a somatic event co-occurs with a copy number event (S1 + S2), occurs before a copy number event (S3 + S4), 
occurs after a copy number event (S5), or if it occurs in a different subclone (S6): 
 

 
 

Where Cmut is the CCF of the somatic event as calculated by ABSOLUTE.  Once the probability that each 
model is consistent with the data, the log odds ratio of the most likely germline and somatic model, L, 
becomes the statistic to apply the filter on: 
 

 
 
Because the allele fraction of a clonal heterozygous somatic event will be similar to a germline heterozygous 
site at high purity, but falls as the purity goes down, the divergence in L between putative somatic events 
(events present in the paired analysis) and putative germline events (events present only when paired 
samples are run without their paired normals) differs greatly depending on purity (Supplementary Fig. 2f), 

pG = max(pG1, pG2)

pS = max(pS1 , pS2 , pS3 , pS4 , pS5 , pS6)

L = log

pG

pS
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meaning that while for impure samples we can use a very stringent cutoff of 0, for higher purity samples the 
cutoff must be relaxed to prevent the removal of true somatic events with high clonality.   
 
To calibrate the cutoff, the data consisting of the 147 available non-hypermutator lymphoma samples with 
paired normal was split into two training sets, each set was split into 10 bins with similar purity and cutoffs 
were found that preserved 99% of the putative somatic events in each bin and then used to fit a linear model 
determining the best cutoff depending on purity (Supplementary Fig. 3a-c).  After applying this filter, the 
less pure samples of our cohort show nearly the same mutation rate as when run through the pipeline with 
their paired normal.  While this step filters out many of the remaining germline events, no sample reports 
fewer events after this filter than in the paired pipeline (Supplementary Fig. 3d-e). 
  
 
Clustering and visualization of mutations in protein structures. We overlaid the identified missense 
mutations found in our cohort onto protein structures from the Protein Data Bank (RCSB PDB; 
www.rcsb.org)25 and applied the recently reported CLUMPS algorithm13  to identify significant spatial 
clustering of mutations in protein structures. Briefly, CLUMPS summarizes the pairwise three-dimensional 
Euclidean distances between mutated residues into a score function and compares the score to a null model 
obtained by randomly scattering the mutations across residues covered in the structure (10,000,000 times). 
Both native (human) and homologous (>20% amino acid sequence identity) protein 3D structures were used 
in this analysis. Protein structures containing mutations from fewer than 5 samples were not analyzed 
because the results from such structures may lack robustness. In addition, we also used CLUMPS to assess 
enrichment of mutations at protein-protein interaction interfaces; this algorithm counts the mutations at 
residues located at protein interfaces and compares the count to a null model created by random mutational 
scattering of mutations across the structures. Images showing protein structures were created with Pymol 
v1.8.0.5 (http://pymol.org). Mutation diagrams (lollipop figures) of mutations were generated using Mutations 
Mapper v1.0.1 (http://www.cbioportal.org/mutation_mapper.jsp)8,9. 
 
Correlation between driver genes and GISTIC2.0 peaks. To investigate whether driver genes were more 
likely to be mutated in copy number regions or not, non-silent coding genes in the cohort were categorized 
by whether they were in a GISTIC peak that was affected by a copy number alteration in its patient, and 
whether it was in one of the driver genes identified as significantly mutated by CLUMPS or MutSig2CV.  
Fisher’s exact test was then used to determine if mutations in driver genes co-occurred with significant copy 
number alterations more frequently than would be expected by random chance. 
 
Assessment of chromothripsis 
Due to the lack of full genome sequencing, we were limited to only one method of detection of chromothripsis 
as described in the literature26. To this end, each chromosome found to have been split into at least 10 
segments longer than 100 exons in which there is at least one deletion of log2(CN/2)<0.25 and at least one 
gain of  log2(CN/2)>0.25 and a variance at least 0.25 was tested to determine if the distances between the 
breakpoints were consistent with an exponential distribution, because it has been reported33 that 
chromothripsis tends to deviate from this model while other mechanisms of copy number alterations do not.   
 
Mutational Signature Analysis 
Methods and Algorithms. The mutational signatures discovery is a process of de-convoluting cancer 
somatic mutations counts, stratified by mutation contexts or biologically meaningful subgroups, into a set of 
characteristic patterns (signatures) and inferring the activity of each of the discovered signatures across 
samples27. For this purpose, we exploited a Bayesian variant of non-negative matrix factorization (Bayesian 
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NMF) recently implemented and applied to several cancer genome projects (see 28,29 for additional 
background and technical details regarding the Bayesian NMF methodology). Bayesian NMF exploits a 
shrinkage or automatic relevance determination (ARD) technique to allow a sparse representation for both 
signatures and activities as well as an optimal inference for the number of signatures (K) by iteratively pruning 
away irrelevant components in balancing between a data-fidelity and a complexity30. The same parameters 
set as previously described were used28,29. All SNVs were classified to 96 possible mutation types or 
categories based on six base substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) within the tri-nucleotide 
sequence context including the base immediately 5’ and 3’ to the mutated base.  
 
Signature discovery in DLBCL 304 WES samples and identification of a micro-satellite unstable 
tumor. A de-novo signature extraction for 304 DLBCL WES samples with the BayesNMF applied to SNVs 
stratified by 96 tri-nucleotide mutation contexts identified three major mutational processes (Supplementary 
Fig. 7a). The similarity of these signatures to known 30 COSMIC signatures at 
http://cancer.sanger.ac.uk/cosmic/signatures was computed with a cosine similarity. The first signature 
(S304A; first de novo signature detected in 304 samples) characterized by a predominance of C>T mutations 
at CpG sites with minor contributions in C>A and T>C mutations was most similar to COSMIC6 (cosine 
similarity 0.87) and was exclusive to one sample with the highest mutation burden. The second signature 
(S304B; second de novo signature detected in 304 samples) characterized by a superposition of elevated 
C>T mutations at CpG sites with a background broad spectrum of base substitutions was most similar to the 
COSMIC1 (cosine similarity 0.86) and pervasive across samples, explaining about 64% overall mutations. 
The third signature (S304C; third de novo signature detected in 304 samples) was characterized by dominant 
T>G mutations at [C/G/T]pTpT sites with explaining about 7% overall mutations, but did not match 30 
COSMIC signatures with the cosine similarity >= 0.78. Interestingly, the highest mutation burden sample 
(DLBCL-MAYO_DLBCL_234-Tumor; 5956 mutation) had a significantly higher activity of S304A (97% SNVs 
were associated with S304A). Since the signature profile of S304A most resembled the COSMIC6, which is 
known to be associated with defective DNA mismatch repairs and found in microsatellite unstable tumors, 
we further explored if this tumor had additional characteristics of the micro-satellite instability (MSI). We found 
this sample had a pathogenic splice site mutation in MLH1 (chr3:37083822G>A) with a significant enrichment 
of insertions and deletions (14% in all variants). We also noted that the third highest mutation sample 
(DLBCL-RICOVER_787-Tumor-SM-4MILK) also had a relatively high activity of S304A (53% SNVs), and 
this sample had a pathogenic nonsense mutation in MSH6 (R298*) with no indel enrichment.  
 
Signature discovery in DLBCL 303 WES samples and identification of activation-induced cytidine 
deaminase signatures. To minimize a possible interference between the MSI signature (S304A) and the 
aging signature (S304B), which shared similar hotspot motifs, C>T at CpG sites, we excluded the putative 
MSI sample with the highest mutation burden in all downstream analyses and re-generate a de-novo 
signature extraction for 303 WES samples. In addition to 96 tri-nucleotide mutation types, we also considered 
the clustering information of mutations as an additional feature to capture a signal of the mutational process 
related to the activation-induced cytidine deaminase (AID signature). As was previously demonstrated29, 
there was a substantial difference in mutation spectra between clustered and non-clustered mutations due 
to a differential activity of both canonical and non-canonical AID signatures. We first computed NMDs 
(Nearest Mutation Distance) for all SNVs, a minimum genomic distance to all other mutations on the same 
chromosome in the same patient, and partitioned them into ‘clustered’ (NMD <= 1kb) and ‘nonclustered’ 
groups (NMD > 1kb) (Supplemental Fig.7b). The threshold (1kb) was manually chosen from a bimodal 
feature of the NMD distribution. Then, we separately counted clustered and non-clustered mutations across 
96 mutation channels and split mutations in each sample into two columns representing clustered and non-
clustered mutational groups, giving rise to the mutation count matrix X (96 by 2M, M is the number of 



Chapuy, Stewart, Dunford, et al.                              Molecular subtypes of DLBCL – Supporting Information   
 

	 55 

samples). This mutation count matrix was ingested as an input for the BayesNMF and factored into two 
matrices, W' (96 by K) and H' (K by 2M), approximating X by W'H'. It should be noted that clustered and non-
clustered mutations from the same patient were separately handled to capture a characteristic signal from 
clustered mutations. Through a scaling transformation, X ~ W'H' = WH, W = W' U-1 and H = UH' where U is 
a K-by-K diagonal matrix with the element corresponding to the 1-norm of column vectors of W', resulted in 
the final signature loading matrix W and the activity loading matrix H.  
 
All fifty independent BayesNMF runs converged to the three signatures solution, identifying the aging 
signature (Aging), the canonical AID signature (cAID), and the secondary AID signature (AID2) shown in Fig. 
2a. The overall activity of discovered signatures in Fig.2b was determined by summing up the activities of 
three signatures assigned to both clustered (red) and non-clustered mutations (blue). The aging signature 
was characterized by pronounced C>T mutations at CpG sites superimposed with a background broad base 
substitutions, most similar to COSMIC1 (cosine similarity 0.93), and its activity was mostly attributed to non-
clustered mutations (98% in non-clustered vs 2% in clustered aging mutations), explaining overall 80% SNVs 
across samples. The cAID signature had characteristic peaks of C>T and C>G mutations at GCT context 
corresponding to one of AID known hotspot motifs at RCY (R = A/G, Y= C/T), and its activity was much 
higher in clustered mutations (70% in clustered mutations) consistent to known AID biology. About 47% 
mutations related to the cAID signature was C>T or C>G mutations at RCY motifs. Interestingly, the third 
signature characterized by T>G mutations at [C/G]TT contexts also showed an enrichment of its activity in 
clustered mutations (36% in clustered mutations), and the signature profile was most similar to COSMIC9 
(cosine similarity 0.75) corresponding to the non-canonical AID activity related to the error-prone DNA 
polymerase eta. Indeed, 50% mutations associated with the AID2 signature were A>[T/C/G] at WA (W=A/T) 
motifs corresponding to the hotspot motifs of non-canonical AID. 
 
Assessment of the impact of a germline component in the mutational signature discovery.  To address 
the impact of the germline contents in our tumor-only pipeline on the mutational signature discovery, we 
separately performed a signature discovery for the 134 samples with available patient-matched paired 
normals using either the tumor-normal pipeline (PAIRED-SET-TN, Supplementary Fig. 7h) or the tumor-
only pipeline (PAIRED-SET-TO, Supplementary Fig. 7i). In both PAIRED-SET-TN and PAIRED-SET-TO, 
SignatureAnalyzer discovered three similar signatures highly concordant to those discovered in the 
COMBINED-SET (n=303, Supplementary Fig. 7g) irrespective of whether the samples were analyzed with 
their respective patient-matched normal samples or with our tumor-only pipeline (cosine similarity in 
Supplementary Table 4f and Supplementary Fig. S7j). Given that the germline component in tumor-only 
samples did not negatively impact the discovery of mutational signatures, we next evaluated if it skews the 
gene-level signature fractions for the significantly mutated genes (SMGs). To remove an additional 
confounding factor from the signature differences between PAIRED-SET-TN and PAIRED-SET-TO, we 
applied a projection approach to infer the signature activity of PAIRED-SET-TO samples onto the signature 
profiles of PAIRED-SET-TN. More specifically, the projection was done by minimizing the Kulbeck-Leibler 
divergence while the signature-loading matrix, W, comprised of the column vectors corresponded to normalized 
signature profiles of PAIRED-SET-TN (Aging, cAID, and AID2) is frozen, and the activity- loading matrix H is 
iteratively updated to best approximate the mutation count matrix of PAIRED-SET-TO, X. The resulting row 
vectors in H represent a de-convoluted signature activity of PAIRED-SET-TO samples onto the signatures of 
PAIRED-SET-TN.  We found a strong correlation of the paired signature fraction for all SMGs for the aging, 
cAID signature and AID2 signature (Pearson correlation = 0.96, 0.98 and 0.95, respectively; Supplementary 
Fig. 7k-m). 
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Assesement of the impact of FFPE artifacts in the mutational signature discovery. We also performed 
additional analyses to assess the impact of FFPE bias on mutational signature discovery. We separately 
applied SignatureAnalyzer to tumors from frozen (FRZN-SET, Supplementary Fig. 7n) and FFPE tissue 
(FFPE-SET, Supplementary Fig. 7o) and compared discovered signatures to those in COMBINED-SET 
(Supplementary Fig. 7p and Supplementary Table 4g). We observed that the cosine similarity of both 
C>T_CpG and cAID signatures was very high among the three sets (Supplementary Fig. 7p and 
Supplementary Table 4g), while the AID2 signature in FFPE-SET has a slightly reduced similarity. To 
investigate the effects of FFPE samples more systematically we performed a series of signature discoveries 
for the pooled sample sets generated by randomly replacing fresh-frozen samples by the same number of 
random FFPE samples (500 experiments). We observed strong stability in the cosine similarities of both 
aging and cAID signatures, but a subtle drop in the AID2 signature with incremental fractions of FFPE 
samples (Supplementary Fig. 7q). However, we cannot rule out that this reduced cosine similarity of the 
AID2 signature might be attributed to the sample heterogeneity between FRZN-SET and FFPE-SET.  
 
Signature enrichment analysis. We first annotated each mutation with the probability (likelihood of 
association) that it was generated by each of the discovered mutational signatures, Pms, where ‘m’ denoted 
a mutation and ‘s’ refers to the signature. More specifically, the likelihood of association to the k-th signature 
for a set of mutations corresponding to i-th mutation context and j-th clustered or non-clustered mutation 
group was defined as [wkhk / ∑(wkhk)]ij, where wk and hk correspond to the k-th column vector and k-th row 
vector of W and H, respectively. The relative activity enrichment for candidate cancer genes (CCGs) with at 
least 10 mutations in Fig. 2c was determined by taking an average of Pms  for all mutations in each CCGs. 
For the gene-level signature-enrichment analysis, we first attempted to identify a hotspot mutation motif out 
of 96 contexts in each signature by considering coding mutations only with Pms >= 0.75, identifying 40 and 
50 characteristic motifs with non-zero probability for cAID and AID2, respectively. Note that keeping 
mutations with a higher Pms, filtered out mutations shared by multiple signatures and enabled the discovery 
of more distinct mutation motifs characteristic to each signature. To take into account sequence composition 
variation across the genome, we enumerated all available tri-nucleotide contexts across coding genes and 
considered genes having non-zero mutations with Pms >= 0.75 in each signature. This information was used 
to estimate the background mutation rates at the hotspot motifs in each signature, resulting in rAging = 4.3 per 
Mb, rcAID = 7.5 per Mb and rAID2 = 2.4 per Mb for the aging, cAID, and AID2 signatures, respectively. Then, 
for given mutation counts with Pms >= 0.75, x, at hotspot motifs and available sequence context, n, in each 
gene, we performed a one-sided binomial test with the estimated background mutation rate to assess the 
significance of the enrichment of each signature across 12532 genes for the aging, 328 genes for cAID, and 
967 genes for AID2 signature having non-zero mutations with Pms >= 0.75 (Supplementary Table 4b-d). 
We corrected for multiple hypotheses and identified genes that are associated with each signature using a 
q-value cutoff of 0.1 (see Q–Q plots in Supplementary Fig. 7c).  
 
Statistical analysis related to signatures. The age correlation with three signatures in Supplementary 
Fig. 7d was performed by binning the age into seven groups and calculating a Pearson correlation between 
the median age and the median activity in each age group. The absolute signature activity in Fig. S14e (left) 
was computed by first binning the CCF of all SNVs into ten groups and counting the number of mutation with 
Pms >= 0.5 in each CCF bin, and the relative signature activity (Supplementary Fig. 14e, right) was defined 
as a fraction of the absolute signature activity to the total number of SNVs in each CCF bin. To determine if 
the AID mutations discovered in this cohort had clustering around the transcription start site (TSS)31, a 
Fisher’s exact test was applied to determine if AID mutations (PcAID + PAID2 > 0.75) in our 98 CCG were more 
frequently within +/- 2000 base pairs of its TSS.  We used a Wilcoxon rank sum test to determine if mutations 
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from the 98 CCGs attributed to either of the two AID signature had a significantly higher proportion of silent 
mutations than mutations not attributed to either AID signature.  
 
 
Integrative analysis of gene expression and copy number data. 
Gene expression profiling and data normalization. RNA samples from 52 samples with available WES 
data were transcriptionally profiled using an U133plus2 Affymetrix gene expression array as previously 
described (batch1)4. The data has been uploaded to GEO with the accession GSE98588. Additional 
expression profiles from 85 samples with available WES data were generated and published previously 
(GSE34171, batch2)4.  The Affymetrix gene expression profiles were normalized using Robust Multi-Array 
Average (RMA)32 and Brainarray custom chip definition files (Version 16) based on Ensemble IDs33.  Gene 
expression values were adjusted for batch effect using a linear regression model of each gene against the 
batch variable (batch1 vs. batch2). The batch-corrected gene expression values are the residuals of the linear 
regression plus the intercept. Log2–transformed batch-corrected gene expression was used for differential 
analysis. The following analyses were performed using the integrative (Epi)DNA-to-Gene Expression 
analysis package (iEDGE, manuscript in preparation). 
 
Cis-analysis. Genomic coordinates of genes within SCNAs were determined using R Bioconductor 
annotation package TxDb.Hsapiens.UCSC.hg19.knownGene. Genes within arm-level alterations were 
considered for within-arm differential expression analysis (Supplementary Table 6a). Genomic boundaries 
of chromosome arms were defined by the start, centromere, and end coordinates of each chromosome as 
annotated in the UCSC hg19 cytoband annotation file. Separately, genes with coordinates within wide peak 
limits of each GISTIC2-defined copy number alteration with a FDR q-value <0.1 were considered for within-
peak differential expression analysis (Supplementary Table 6a).  
 
Expression of the genes within each GISTIC-defined alteration peak was tested for association with the 
corresponding peak’s somatic copy number alteration (SCNA) status (presence or absence of copy gain or 
loss) by a differential expression test using the R package limma34. One-sided p-values were estimated, 
since the associations of interest are gene expression up-regulation among samples with copy gain and gene 
expression down-regulation among samples with copy loss. The p-values for all genes across all alteration 
peaks were corrected for multiple hypothesis testing using the false discovery rate (FDR) estimation35. Genes 
with FDR < 0.25 and a fold change of >1.2 were considered significant "cis-acting" genes. We performed 3 
types of differential expression analysis: 1. Arm-levels: Integrating arm-level SCNA status and expression of 
genes on each arm (Supplementary Table 6b-c); 2. Focal alterations: Integrating focal SCNAs and 
expression of genes in focal peaks (Supplementary Table 6d-e), and 3. focal or arm: comparing focal or 
arm level SCNA status and expression of genes in focal peak. In this case, the copy number alteration status 
of the sample is considered altered if it is altered in the focal peak or the arm that harbors the focal peak. 
(Supplementary Table 6f-g). 
 
For focal events, COSMIC cancer genes36 with a positive correlation to gene expression in our data (fold 
change >1.2, q<0.25) are indicated in Fig 4a. 
 
Cell-of-origin (COO) assignment. The COO phenotype was assigned for 80% (242/304) of samples. For 
the newly gene expression profiled fresh frozen samples (GSE98588, batch1), the COO assignment was 
performed using a linear-predictive-score classifier as previously published (Supplementary Table 1)4,37,38. 
The COO phenotypes for the 85 previously published samples (GSE34171, batch2) were previously reported 
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(Table S1)4. NanoString-based COO assignment using the Lymph2Cx assay39 was performed for additional 
102 FFPE samples as recently reported (Supplementary Table 1)40.  
 
Gene Set Enrichment Analysis (GSEA). For samples with paired available gene expression data, GSEA 
was performed as previously described4,21,41. Indicated target gene sets (Supplementary Fig. 13f-h) were 
tested for an enrichment in a given DLBCL clusters vs. the union of samples in the other DLBCL clusters 
(excluding C0 DLBCLs).  
  
Targeted DNA-sequencing for the detection of chromosomal rearrangements 
Library Construction, sequencing and pre-analysis processing. Targeted rearrangements 
(Supplementary Table 5a) were captured from either leftover uncaptured libraries from WES or genomic 
DNA, sequenced using an Illumina sequencing platform, de-multiplexed and aligned to the reference 
sequence b37 edition from the Human Genome Reference Consortium with bwa42 as described 
previously43,44.  A total of 296/304 samples had a mean read depth is 221.4x and met all quality control 
checkpoints and 99% of samples had a power greater than 0.996 to detect chromosomal rearrangements. 
 
Chromosomal rearrangement pipeline. Somatic rearrangements were detected using four different calling 
algorithms, BreaKmer18, Lumpy17, dRanger16 and SVaBA45, followed by Breakpointer validation, filtering and 
a CCF estimation module (Supplementary Fig. 8a) as described below.  
 
Chromosomal rearrangement detection. BreaKmer18, Lumpy17 and dRanger16 were applied as previously 
described to generate  a separate list of candidate rearrangements.  
 
SVaBA. SVaBA identified rearrangements by performing de novo local assembly across every 25 kb region 
in the genome, with 1 kb overlaps. Assembly within SVaBA was achieved through a modified version of 
SGA46, which assembled reads with gapped alignments, unmapped pair mates, clipped alignments and 
reads with an aligned insert size that differed substantially from the mean. The assembled contigs were re-
aligned within SVaBA to the reference genome using an in-memory implementation of BWA-MEM47,48. 
Contigs with multi-part alignments were used to infer candidate rearrangements, excluding contigs with low 
alignment quality. Within each local assembly window, rearrangements were genotyped by finding the 
optimal alignment of the sequencing reads to either the variant-supporting contig or the reference genome. 
Rearrangements obtained from contigs with breakpoints supported by > 4 tumor reads and no normal reads 
were classified as somatic. In addition to detecting rearrangements from assembled contigs, discordant reads 
were clustered as a second signal for rearrangements. In the absence of a supporting contig, discordant 
read clusters required a minimum of 8 tumor read pairs with a high alignment quality, and no normal read 
pairs, to be called as a somatic rearrangement. The discordant read clusters were further compared with the 
rearrangements obtained from the contig assemblies to obtain the total number of variant supporting reads 
for each somatic rearrangement. 
  
Filtering and Breakpointer module. The candidate rearrangements detected by each detector were filtered 
for variants found in 342 in house normal samples from the Broad Institute based on a 5 kb window to match 
candidate rearrangements. The remaining variants were clustered based on a 50 bp window and the union 
of all unique clustered candidate rearrangements was passed to Breakpointer16 (Supplementary Fig. 8a). 
Breakpointer scans for additional supporting split read evidence to confirm breakpoint junctions in the tumor 
sample and to reject candidate somatic rearrangements with evidence of the rearrangement appearing in 
matched normal samples.  We required a combined total of at least 4 supporting reads, either read pairs or 
split reads, following Breakpointer.  We also used a panel of an additional 21 normal samples sequenced 
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with the same targeted bait set and protocol to reject artifacts specific to the targeted protocol.  A 5 kb window 
was used to match candidate rearrangements. In addition, we filtered out all intrachromosomal 
rearrangements (deletions and tandem fusions) involving the IGH, IGK, IGL, TRA, TRB, TRG loci and 
translocations between two loci, both not part of the bait set.  
 
A total of 3293 structural variants were called and passed all standard panel of normal filtering steps (1355 
from dRanger, 514 from SVaBA, 453 from Breakmer and 1775 from Lumpy). Subsequent clustering, 
Breakpointer validation, filtering events found in 19 similar processed normal samples and post-processing 
review resulted in 413 reported SVs (Supplementary Table 5). 
 
CCF calculation for SVs. For SVs, we applied a novel algorithm for determining CCF (CSV) based on local 
copy number and allele fraction. The calculation here is roughly equivalent of the ABSOLUTE recipe of 
mutation CCFs, except that SVs consist of two breakpoints, each with its own estimated allele fraction, 
underlying copy number, and multiplicity. SV multiplicity has the same meaning as mutation multiplicity: the 
number of SV events per cell. With targeted data, there is an additional complication in that not all the 
breakpoints occur within targeted regions, which leaves the observed allele counts biased against the 
reference allele. For this reason, only breakpoints found within a targeted region are used in SV CCF 
estimates.  At a given breakpoint, the DNA copy state is defined according to: 
 

 
Where 

 
 
SV breakpoints often occur at edges of copy number segments, which introduces some ambiguity regarding 
the relevant copy number state. The copy number estimates used here are those within the SV alternate 
allele, which corresponds to a window upstream (3’ direction in reference coordinates) of forward mapped 
alt supporting reads and downstream (5’) of reverse mapped alt supporting reads for each breakpoint. We 
used a 10kb window, roughly consistent with the breakpoint resolution of our copy number segmentation 
algorithm (ReCapSeg).  Estimates of Ta , Tb , and CCNV are based on ABSOLUTE and AllelicCapseg.  Although 
the copy number state and the SV allele fractions may not be the same at both breakpoints for a given SV, 
the SV CCF is constrained to be the same at both breaks.  At each break, the CCF is estimated as a CCF 
probability density distribution (pdf) and the combined SV CCF is the joint pdf from the two breakpoint CCF 
pdfs. In cases where only one of the two breakpoints was contained within a targeted region, only the targeted 
breakpoint CCF pdf was used to estimate the SV CCF. The expected allele fraction for a given SV breakpoint 
is calculated for different somatic variant configurations similar to the different scenarios modeled when 
calculating the germline/somatic for point mutations. There are three basic SV event scenarios that depend 
on the ordering of events (SV comes before or after the SCNA) and whether or not the SV occurs in tumor 
cells with or without the somatic copy number variant: 
 

1) The SV variant occurs on cells with somatic copy number variants (Ta or Tb) with multiplicity m. In this 
scenario the SV event occurs chronologically after the copy number event so the multiplicity(m) 
should be 1. 
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2)   The SV variant occurs in tumor cells without the somatic copy number alteration with multiplicity 1.    

 
    

 3) The SV variant occurs in all cells with the the somatic copy number alteration Ta or Tb with multiplicity 
m and a fraction of cells without the somatic copy number alteration. In this scenario the SV event 
occurs chronologically before the copy number event.  

 
    
CSV ,the CCF of the structural variant, from  f 0 to 1 in increments of 0.01 to construct the CSV pdf. The CSV pdf 
is based on the beta pdf of the estimated AF with the observed read depth d, and the counts of alternate 
allele supporting reads a.  

 

 
 
where 𝛽 is the beta probability density distribution for observing a alt reads, from a total of d with allele fraction 
AFi. The scenario with the maximum pdf mode was chosen to represent the SV breakpoint. This boils down 
to a choice between scenario 3 and 1 since scenario 1 and 2 are mathematically equivalent when the SV 
multiplicity is 1.  The combined SV CCF from both breakpoints is the joint pdf: 
 

 
 
The CSV value for a given SV is the mode of the CCF pdf distribution and the 95% confidence interval for CSV 
is the 95% region of the normalized pdf around the mode.  
 
Validation of CCF in LBCL cell lines.The CCF calculation for structural variants was also applied to 31 B-cell 
lymphoma (DLBCL and follicular lymphoma) cell lines as a validation test of the method, with the 
assumption that the bulk of known driver SV events in these cell lines should be clonal. Sequencing data for 
the 31 cell lines used the same protocol with as the targeted data for the detection of SVs in DLBCL. The 
results of this test are shown in Supplementary Fig. 14h, which show that the bulk of driver translocations 
IgH-BCL2, IgH-BCL6 and IgH-MYC are found to be clonal with CCFs exceeding 0.9. Only one cell line, Ly18, 
had driver SVs but neither of the balanced translocations between MYC and IGH had CCF 95% CI’s that 
excluded CCF >0.9. Eight cell lines lacked a driver SV and the remaining 22 cell lines had at least one clonal 
driver SV.  
 
Visualization. Rearrangements were visualized either as circos plots (http://circos.ca) or as stick figures 
plotting the breakpoint in its genomic context.   
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Immunohistochemistry of PD-1 ligands 
Double staining of PD-L1 (Cell Signaling, clone 405.9A11) and PAX5 (BD Biosciences, 24/Pax-5) and 
staining of PD-L2 (EMD Milipore, clone 366C.9E5) was performed with an automated staining system (Bond 
III; Leica Biosystems, Buffalo Grove) as previously described43,49.  
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